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Abstract

Experiments in coherent spectroscopy correspond to control of quantum mechanical ensembles guiding them from initial to final

target states. The control inputs (pulse sequences) that accomplish these transformations should be designed to minimize the effects

of relaxation and to optimize the sensitivity of the experiments. For example in nuclear magnetic resonance (NMR) spectroscopy, a

question of fundamental importance is what is the maximum efficiency of coherence or polarization transfer between two spins in

the presence of relaxation. Furthermore, what is the optimal pulse sequence which achieves this efficiency? In this paper, we give

analytical answers to the above questions. Unexpected gains in sensitivity are reported for one of the most commonly used ex-

perimental building blocks in NMR spectroscopy. Surprisingly, in the case when longitudinal relaxation is small, the relaxation

optimized pulse elements (ROPE) that transfer maximum polarization between coupled spins are longer than conventional

sequences.

� 2003 Elsevier Science (USA). All rights reserved.
1. Introduction

The control of quantum ensembles has many appli-

cations, ranging from coherent spectroscopy to quan-

tum information processing. In most applications

involving control and manipulation of quantum phe-
nomena, the system of interest is not isolated but in-

teracts with its environment. This leads to the

phenomenon of relaxation, which in practice results in

signal loss and ultimately limits the range of applica-

tions. Manipulating quantum systems in a manner that

minimizes relaxation losses poses a fundamental chal-

lenge of utmost practical importance. A premier exam-

ple is the control of coupled spin dynamics in nuclear
magnetic resonance (NMR) spectroscopy [1]. In multi-

dimensional NMR experiments, transfer of coherence

between coupled nuclear spins is a crucial step. However

with increasing size of molecules or molecular com-

plexes, the rotational tumbling of the molecules becomes

slower and leads to increased relaxation losses. When

these relaxation rates become comparable to the spin–

spin couplings, the efficiency of coherence transfer is
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considerably reduced, leading to poor sensitivity and

significantly increased measurement times.

With recent theoretical advances, it has become

possible to determine upper bounds for the efficiency of

arbitrary coherence transfer steps in the absence of re-

laxation [2]. However, from a spectroscopist�s perspec-
tive, some of the most important practical (and

theoretical) problems have so far been unsolved:

(A) What is the theoretical upper limit for the coherence

transfer efficiency in the presence of relaxation?

(B) How can this theoretical limit be reached experi-

mentally?

The above raised questions can be addressed by

methods of optimal control theory. The framework of
optimal control theory was developed to solve problems

like finding the best way to steer a rocket such that it

reaches the moon, e.g., in minimum time or with mini-

mum fuel. Here we are interested in computing the op-

timal way to steer a quantum system from some initial

state to a desired final state with minimum relaxation

losses. In this paper we introduce a class of control sys-

tems which gives analytical solutions to the above raised
questions. It is shown that widely used standard NMR

techniques are far from being optimal and surprising new

transfer schemes emerge.
reserved.
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Fig. 1. Transfer schemes for (a) INEPT and (b) ROPE (Relaxation

Optimized Pulse Element) for the transfer Ia ! 2IbSc. Thick and thin

arrows represent selective spin rotations by strong and weak rf pulses,

respectively. Dashed arrows represent evolution under J couplings.

Fig. 2. Representation of the system variables r1, r2, the angles b1, b2,
and of the control parameters u1 ¼ cosb1, u2 ¼ cosb2 in terms of the

expectation values hIxi, hIzi, h2IySzi, and h2IzSzi.
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2. Optimal control of nuclear spins under relaxation

The various relaxation mechanisms in NMR spec-

troscopy have been well studied [1,3]. In liquid solutions,

the most important relaxation mechanisms are due to

dipole–dipole interaction (DD) and chemical shift an-

isotropy (CSA), as well as their interference effects (e.g.

DD-CSA cross-correlation terms) [4]. The optimal

control methodology presented here is very general and
can take into account arbitrary relaxation mechanisms.

To demonstrate the ideas and basic principles we focus

on an isolated pair of heteronuclear spins I (e.g., 1H)

and S (e.g., 3C or 15N) with a scalar coupling J . Both
spins are assumed to be on resonance in a doubly ro-

tating frame and only dipole–dipole and CSA relaxation

is considered (no cross-correlated relaxation). This case

approximates for example the situation for deuterated
and 15N-labeled proteins in H2O where 1H–15N spin

pairs are isolated. In particular, we focus on slowly

tumbling molecules in the spin diffusion limit [1]. In this

case longitudinal relaxation rates are negligible com-

pared to transverse relaxation rates [1].

For such coupled two-spin systems, the quantum

mechanical equation of motion (Liouville–von Neu-

mann equation) for the density operator q [1] is given
by

_qq ¼ pJ ½�i2IzSz; q� þ pkDD½2IzSz; ½2IzSz; q��
þ pkICSA½Iz½Iz; q�� þ pkSCSA½Sz; ½Sz; q��: ð1Þ

Here J is the scalar coupling constant and kDD is the

transverse relaxation rate due to dipole–dipole relaxa-

tion. The kICSA and kSCSA represents the CSA relaxation
rate for spin I and S, respectively. The net transverse

relaxation rate for spin I and S is denoted by kI and kS ,
respectively, and is given by

kI ¼ kDD þ kICSA; kS ¼ kDD þ kSCSA:

These relaxation rates depend on various physical pa-

rameters, such as the gyromagnetic ratios of the spins,

the internuclear distance, and the correlation time of the

molecular tumbling [1]. In this paper, we address the

problem of finding the maximum efficiency for the

transfers

Ia ! 2IbSc ð2Þ

and

Ia ! Sb; ð3Þ

where a, b, and c can be x, y, or z. These transfers are of
central importance for two-dimensional NMR spec-

troscopy and are conventionally accomplished by the

insensitive nuclei enhanced by polarization transfer

(INEPT) [5] (see Fig. 1a) and refocused INEPT [6] pulse

sequence elements, respectively.
The two heteronuclear spins have well separated

resonance frequencies, allowing for fast selective ma-

nipulation of each spin on a time-scale determined by
the coupling J and the relaxation rates. Hence, in the

following it is assumed that any initial Cartesian spin

operator Ia can be transformed to an operator of the

form Ix cos b1 þ Iz sin b1 by the use of strong, spin-se-

lective radio frequency (rf) pulses without relaxation

losses (see Fig. 2). Let r1ðtÞ represent the magnitude of
polarization and in-phase coherence on spin I at any

given time t, i.e. r21ðtÞ ¼ hIxi2 þ hIzi2, where hIai ¼ trace
fqIag represents the expectation value of Ia. Using rf

fields, we can exactly control the angle b1 in the term

r1ðtÞ sin b1Iz þ r1ðtÞ cos b1Ix. Hence we can think of

cos b1 as a control parameter and denote it by u1 (see

Fig. 2).

Observe that the operator Iz is invariant under the

evolution Eq. (1), whereas Ix evolves under the J cou-

pling to 2IySz and also relaxes with rate kI . As the op-
erator 2IySz is produced, it also relaxes with rate kI . By
use of rf pulses it is possible to rotate the coherence

operator 2IySz to 2IzSz, which is protected from relaxa-

tion (see Fig. 1b). Let r2 represent the total magnitude of
the expectation values of these bilinear operators, i.e.

r22ðtÞ ¼ h2IySzi2 þ h2IzSzi2. We can control the angle b2
in the term r2ðtÞ cos b22IySz þ r2ðtÞ sin b22IzSz and we

define cos b2 as a second control parameter u2 (see Fig.
2). The evolution of r1ðtÞ and r2ðtÞ under the scalar

coupling and relaxation can be expressed as follows.



ig. 3. (a) The dashed curve shows the trajectory of the dynamical

ystem (4) when n ¼ 1 and u1ðtÞ and u2ðtÞ are maintained at value 1

INEPT transfer). The maximum transfer amplitude gINEPT is reached

t t� ¼ ð4JÞ�1. The solid curve represents the trajectory for optimal

hoice of u1ðtÞ and u2ðtÞ (ROPE transfer). (b) Efficiency gINEPT of

NEPT (dashed curve) and efficiency g of ROPE (solid curve) as a

unction of the relative relaxation rate n for transfer (2). (c) Gain of

OPE transfer efficiency compared to INEPT-type experiments for

ransfer (2) (g=gINEPT) and for the in-phase transfer (3) (gin=gref :INEPT).

(a) (b)

Fig. 4. Schematic representation of the relation (8) to be satisfied by

the optimal trajectory. (a) In the first period during which hIzi > 0, the

density operator q is restricted to the three-dimensional subspace

spanned by the operators Ix, 2IySz, and Iz. (b) In the next period during
which hIzi ¼ 0, the density operator q is restricted to the three-di-

mensional subspace spanned by the operators Ix, 2IySz, and 2IzSz. The
optimal trajectory lies in the plane which satisfies Eq. (8).
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From Eq. (1), we have

dhIziðtÞ
dt

¼ 0;

dhIxiðtÞ
dt

¼ �pJh2IySziðtÞ � pkIhIxiðtÞ;
dh2IzSziðtÞ

dt
¼ 0;

dh2IySziðtÞ
dt

¼ pJhIxiðtÞ � pkIh2IysziðtÞ:

Using the fact that r1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIzi2ðtÞ þ hIxi2ðtÞ

q
and

r2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2IySzi2ðtÞ þ h2IzSzi2ðtÞ

q
and above set of

equations, we can write

d

dt

r1ðtÞ
r2ðtÞ

� �
¼ pJ

�ðkI=JÞ cos2 b1ðtÞ � cos b1ðtÞ cos b2ðtÞ
cos b1ðtÞ cos b2ðtÞ � ðkI=JÞ cos2 b2ðtÞ

� �


r1ðtÞ
r2ðtÞ

� �
:

Using u1 ¼ cos b1 and u2 ¼ cos b2, we get

d

dt
r1ðtÞ
r2ðtÞ

� �
¼ pJ

�nu21 �u1u2
u1u2 �nu22

� �
r1ðtÞ
r2ðtÞ

� �
: ð4Þ

Here

n ¼ kI=J ð5Þ
is the relative relaxation rate and measures the relative
strength of the relaxation rate kI to the spin–spin cou-

pling J .
The central problem addressed in this paper is the

following: Given the dynamical system in Eq. (4), how

should u1ðtÞ and u2ðtÞ be chosen so that starting from

r1ð0Þ ¼ 1 we achieve the largest value for r2. In spectro-

scopic applications this would correspond to the maxi-

mum efficiency for the transfer of Ia to 2IbSc (Eq. (2)).
Observe if n ¼ 0 (no relaxation), then by putting

u1ðtÞ ¼ u2ðtÞ ¼ 1, we have r2ð1=2JÞ ¼ 1, i.e. after a time

t ¼ 1=2J the operator Ix is completely transferred to 2IySz.
This is the INEPT transfer element [5]. However if n > 0,

it is not the best strategy to keep u1ðtÞ and u2ðtÞ both 1 (as
demonstrated subsequently), see Fig. 3a. Using principles

of optimal control theory, it is possible to obtain analyt-

ical expressions for the largest achievable value of r2 and
the optimal values of u1ðtÞ and u2ðtÞ, see solid curve in Fig.
3a. One of the main results of the paper is as follows.

For the dynamical system in Eq. (4) the maximum

achievable value of r2 (i.e., the maximum transfer effi-

ciency g) is given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
� n ð6Þ

and the optimal controls u�1ðtÞ and u�2ðtÞ satisfy the re-

lation

u�2ðtÞ
u�1ðtÞ

¼ g
r1ðtÞ
r2ðtÞ

: ð7Þ
F

s

(

a

c

I

f

R

t

This implies that throughout the optimal transfer pro-

cess, the ratio of h2IySziðtÞ and hIxiðtÞ is always main-
tained at (see Fig. 4)

h2IySziðtÞ
hIxiðtÞ

¼ g: ð8Þ



314 N. Khaneja et al. / Journal of Magnetic Resonance 162 (2003) 311–319
The optimality of this choice of u1 and u2 can intui-
tively be established as follows. As r1 is transferred to r2,
the ratio r2=r1 increases from 0 to 1. The choice of

optimal u1 and u2 should be such that the ratio of gain

dr2 in r2 to loss dr1 in r1 for incremental time steps dt is
maximized. If we compute this ratio, we get

_r2r2
� _r1r1

¼ r1
r2

p � np2

p þ n
;

where p ¼ ðu2r2Þ=ðu1r1Þ. If we maximize the above ex-

pression with respect to p for a given r2=r1 we get the

optimal p� ¼ g. Implying the optimal controls u�1ðtÞ and
u�2ðtÞ satisfy the relation (7).

Experimentally, the relaxation optimized pulse ele-

ment (ROPE) which achieves this optimal efficiency has

the following characterization. Starting from the co-
herence operator Ix (r1 ¼ 1, r2 ¼ 0), this operator is

immediately transformed to the polarization operator Iz
(which is protected against relaxation). Then the oper-

ator Iz is gradually rotated towards Ix (which relaxes and
also evolves to 2IySz under the coupling term) such that

Eq. (8) is fulfilled for all times. Once hIzi becomes 0, the
operator 2IySz is gradually rotated to 2IzSz (which is also
protected against relaxation), again maintaining the re-
lation of Eq. (8) (see Fig. 4). Finally, 2IzSz is rapidly

rotated to the target state 2IbSc (see Fig. 1b).

It is instructive to compare the optimum coherence

transfer efficiency g (Eq. (6)) for the ROPE transfer

(solid curve in Fig. 3b) with the maximum transfer ef-

ficiency of INEPT. Recall, in INEPT, the efficiency of

the transfer Ix ! 2IzSy as a function of transfer time t is

given by gINEPTðtÞ ¼ expð�pktÞ sinðpJtÞ: This efficiency
is maximized for a transfer time t� ¼ ð1=pJÞ cot�1ðnÞ
and this value is gINEPTðt�Þ ¼ expð�n cot�1ðnÞÞ sin
ðcot�1ðnÞÞ. Fig. 3c shows the ratio g=gINEPT as a func-

tion of n. In the limit n � 1 the ratio g=gINEPT ap-

proaches e=2 ¼ 1:359.
For the transfer Ix ! Sx (3) the operator Ix is first

transferred to 2IzSy which is then transformed to Sx. The
optimal transfer 2IzSy ! Sx has similar character as the
optimal transfer Ix ! 2IzSy and has the transfer effi-

ciency given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkS=JÞ2

q
� ðkS=JÞ. Therefore, the

total efficiency for the in-phase to in-phase ROPE

transfer is

gin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kI

J

� �2
s0

@ � kI

J

1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kS

J

� �2
s0

@ � kS

J

1
A:

If kI ¼ kS , then gin ¼ g2. Fig. 3c also shows the ratio of
this optimal efficiency versus the maximum efficiency of

the refocused INEPT sequence gref :INEPT ¼ ðgINEPTÞ2 for
the case when kI ¼ kS . In the limit of large n, the ratio
approaches e2=4 ¼ 1:847, i.e., gains of nearly 85% are

possible using relaxation optimized pulse elements

(ROPE).
The formal proof of the above results is based on the
central tenet of optimal control theory, the principle of

dynamic programming [7]. In this framework, to find

the optimal way to steer system (4) from the starting

point ðr1; r2Þ ¼ ð1; 0Þ to the largest possible value r2, we
need to find the best way to steer this system for all

choices of the starting points ðr1; r2Þ. Starting from

ðr1; r2Þ, we denote the maximum achievable value of r2
by V ðr1; r2Þ, also called the optimal return function for
the point ðr1; r2Þ. The optimal return function for sys-

tem (4) and optimal control u1ðr1; r2Þ and u2ðr1; r2Þ
satisfy the well known Hamilton Jacobi Bellman

equation, see Appendix A for details. It is shown in

Appendix A that the optimal return function for the

control system (4) is

V ðr1; r2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2r21 þ r22

q
ð9Þ

and the optimal controls satisfy Eq. (7). Evaluating the

optimal return function at ð1; 0Þ, we get V ð1; 0Þ ¼ g.
Therefore, the maximum transfer efficiency in a spec-

troscopy experiment involving transfer of polarization Ix
to 2IzSx is g and the optimal controls u1 and u2 satisfy
Eq. (7).

It is important to note that in the above problem,

there is no constraint on the the time required to transfer

Ix to 2IzSx. The maximum achievable efficiency obtained

as a solution to the above problem can only be achieved

in the limit of very long transfer times (although most of

the efficiency in achieved in finite time). In practice, it is

desirable to reduce the duration of the pulse sequence.

Therefore this raises the question, what is the maximum
transfer efficiency of Ia to 2IbSc in a given finite time T .
This problem can also be explicitly solved (see Appendix

B). Here, we describe, the characteristics of the optimal

pulse sequence: If T 6 ðcot�1ð2nÞÞ=pJ , then u1ðtÞ ¼ u2
ðtÞ ¼ 1 throughout, i.e., b1 and b2 in Fig. 2 are always

kept zero. This solution corresponds to the INEPT pulse

sequence. For T > ðcot�1ð2nÞÞ=pJ the optimal trajec-

tory has three distinct phases (see Figs. 5 and 6).
There is a s (which is a function of T ), such that for 06

t6 s (phase I), u2ðtÞ ¼ 1 and u1ðtÞ is increased gradually

from a value u1ð0Þ < 1 to u1ðsÞ ¼ 1 (see Appendix B).

Then for time s6 t6 T � s (phase II), the optimal control
u1ðtÞ ¼ u2ðtÞ ¼ 1. Finally for tP T � s (phase III), we

haveu1ðtÞ ¼ 1andu2ðtÞ is decreased from u1ðT � tÞ ¼ 1 to

u2ðT Þ ¼ u1ð0Þ. The optimal control always satisfies

u1ðtÞ ¼ u2ðT � tÞ, as depicted in Fig. 6a. The parameter s
is related to T through the following equation:

T ¼ 2s þ h2 � h1
pJ

; ð10Þ

where

h1 ¼ cot�1
1� jðsÞ
2njðsÞ ; h2 ¼ tan�1 1� jðsÞ

2n
;



Fig. 6. Controls u1 and u2 (panel a), the corresponding rf pulse se-

quence (panel b) and the expectation values hIzi, hIxi, h2IySzi, and
h2IzSzi (panel c) are shown for a finite-time ROPE sequence (n ¼ 1,

s ¼ 0:1J�1, T ¼ 0:263J�1) that optimizes the transfer Ix ! 2IySz. In
panel b, the initial hard 55�y� pulse establishes u1ð0Þ ¼ 0:572 (see panel

a) and the final hard 55�x� pulse completes the transfer. During phase I
and III, the optimal rf amplitudes Brf

x;yðtÞ are given in frequency units

(mx;yðtÞ ¼ cIB
rf
x;yðtÞ=2p, where cI is the gyromagnetic ratio of spin I).

During phase II no rf pulses are applied. Approaching phase II (Panel

b) the rf amplitude becomes large for a very short time period. This can

experimentally be very well approximated by a hard pulse of small flip

angle.

(a)

(b)

Fig. 5. Phase trajectory of the controls u1 and u2 (panel a) and ~rrðtÞ
(panel b) for a finite-time ROPE sequence (n ¼ 1).
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jðsÞ ¼ 1þ 2n2 � 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
coth pJ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
s

�

þ 2 sinh�1 n

�
:

At time s, the optimal trajectory (r1; r2) passes from

phase I to II and makes an angle h1 with the r1 axis and
at time T � s the optimal trajectory passes from phase II

to phase III and makes an angle h2 with the r1 axis (see
Fig. 5b). The optimal efficiency gT for the finite time T is
expressed in terms of these angles as

gT ¼ expðnðh1 � h2ÞÞð1� n sin 2h2Þ
sinðh1 þ h2Þ

: ð11Þ

In the limit, T goes to infinity s ¼ T=2 and h1 ¼ h2 ¼
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
� n and gT approaches g in (6). This

corresponds to the unconstrained time case we discussed

initially. For the general finite time problem, we can

analytically characterize the optimal controls (see Fig.

6a) and the optimal rf pulse elements (see Fig. 6b) as

following.
For 06 t6 s, the optimal control is given by

u1ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1f1þ coshð/ðtÞÞg

ðBR2
1 þ 2A2R2

2Þ � R2
1 coshð/ðtÞÞ

s
;

where A ¼ sinh/ðs=2Þ, B ¼ cosh/ðsÞ, and /ðtÞ ¼ 2

sinh�1 n þ 2pJt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
. The optimal trajectory crosses

from region II to region III at the point
ðR1;R2Þ ¼
gTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan2 h2 þ jðsÞ
p ;

gTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðjðsÞ= tan2 h2Þ

p
 !

(as depicted in Fig. 5). For t > s, we have u1ðtÞ ¼ 1 and

u2ðtÞ ¼ u1ðT � tÞ. The explicit expression for the rf-

amplitude my for phase I in panel b of Fig. 6 in terms of
u1 is



Fig. 7. Optimal transfer efficiency gT as a function of the total transfer

time T for various values of n. The circles indicate the critical time
cot�1ð2nÞ

pJ below which the ROPE sequences are identical to the standard

INEPT sequence. For times greater than this critical time, the ROPE

sequences are more efficient than INEPT.

Fig. 8. Experimental antiphase signal 2IzSy after INEPT (gray curve)

and ROPE (black curve) transfer of Iz ! 2IzSz, followed by a hard 90�
(S) pulse. Spins I and S correspond to the 1H–3C spins of 3C-labeled

sodium formate in in 92% D6-glycerol and 8% D2O at a temperature of

250 K.
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myðtÞ ¼ 2pJ
u1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u21

p tanh
/
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
;

and in phase III, mxðtÞ ¼ myðT � tÞ. For the transfer

Iz ! 2IzSz, the flip angle of the initial and final hard

pulses (see Fig. 6b) is given by sin�1 u1ð0Þ. For n ¼ 1 and

T ¼ ð0:263=JÞ we find u1ð0Þ ¼ 0:5716. The resulting

value for initial and final flip angle is 55.138�.
Fig. 7 depicts the maximum achievable efficiency as a

function of transfer time T for various values of n.
3. Experimental

Experimental tests were performed using 3C-labeled

sodium formate dissolved in 92% D6–glycerol and 8%
D2O as a heteronuclear model two-spin system with

J ¼ 193Hz, where 1H and 3C represent spins I and S,
respectively. At a temperature of 250K, and a proton

frequency of 500MHz, the transverse relaxation time T2
of spin I was 1.4ms, corresponding to a rate kI ¼
ðpT2Þ�1 ¼ 227Hz, corresponding to n ¼ kI=J ¼ 1:18.
At this field strength the transverse relaxation of the

protons is dominated by the dipolar relaxation mech-
anism. In the preparation phase of the experiments, the

thermal equilibrium S magnetization was dephased by

applying a 90� (S) pulse followed by a pulsed magnetic

field gradient. The transfer of Iz ! 2IzSz was effected by

INEPT and ROPE experiments. Finally, a hard 90� (S)
pulse was applied to transform 2IzSz to 2IzSy . The rel-

ative transfer efficiencies were determined by comparing

the resulting anti-phase signals of spin S (see Fig. 8).
Both INEPT and ROPE sequences were performed

without the use of refocussing pulses and both spins I
and S were irradiated on resonance. For INEPT, the

maximum transfer efficiency was found for a duration

of 1.2ms (gray curve in Fig. 8). A ROPE sequence with

a total duration of T ¼ 5:006 ms and a duration

s ¼ 2:5ms of phase I (and of phase III) was used. The
hard and shaped pulse (see Fig. 6b) of phase I was

approximated by a series of equally spaced 8 hard

pulses with flip angles 4.4�, 2.5�, 3.6�, 5.3�, 7.7�, 11.6�,
19.1�, 62.5�, and rf amplitude of 2:5 kHz. Similarly, the
shaped and hard pulse of phase III was approximated

by a series of equally spaced 8 hard pulses with flip

angles 0�, 54�, 21.6�, 13.5�, 9�, 6.1�, 4.2�, and 4.4�. For
n ¼ 1:17, a gain of 29.9% is expected for an ideal
ROPE sequence compared to INEPT. For the finite

time implementation with T ¼ 5:006ms with only 8

hard pulses in phase I and III, a gain of 27% is ex-

pected according to numerical simulations. Experi-

mentally, a gain of 19% was found. The discrepancy

between the theoretical and experimental gain can be

attributed to non-vanishing cross-correlation effects,

experimental imperfections such as rf inhomogeneity
and non-vanishing longitudinal relaxation rates. How-

ever, the superior transfer characteristics of the ROPE

transfer scheme has clearly been demonstrated by the

experiment.
4. Conclusions and outlook

In this paper, we initiated the study of a new class of

control systems which arise naturally in optimal control

of quantum mechanical systems in the presence of re-

laxation. This made it possible to derive for the first

time upper achievable physical limits on the efficiency of

coherence and polarization transfer on two-coupled

spins. In this paper, the focus was on the study of an

isolated pair of scalar coupled heteronuclear spins under
dipole–dipole and CSA relaxation in the spin diffusion
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limit. For this example a surprising new transfer scheme
was found which yields substantial gains (of up to 85%)

in transfer efficiency. The methods presented here are by

no means limited to the case of coupled two spins.

These can be generalized for finding relaxation opti-

mized pulse sequences in larger spin systems as com-

monly encountered in backbone and side chain

assignments in protein NMR spectroscopy. Further-

more these methods directly extend to other routinely
used experiments like excitation of multiple quantum

coherence [1]. Some obvious extensions of the method-

ology presented here are to incorporate cross-correla-

tion effects [4] among different relaxation mechanisms

and to include in the design of pulse sequences addi-

tional criteria such as broadbandedness and robustness

with respect to relaxation rates and experimental im-

perfections. The methods presented here are not re-
stricted to NMR applications but are broadly applicable

to coherent control of quantum-mechanical phenomena

in the presence of dissipation and decoherence. The

control systems studied in this paper are characterized

by the fact that they are linear in the state of the system

and controls can be expressed as polynomial functions

of fewer parameters. Such systems have so far not re-

ceived much attention in the optimal control literature
due to lack of physical motivation. It is expected that

the study of these systems will foster further develop-

ments in the area of system science and mathematical

control theory.
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Appendix A. Optimal coherence transfer with no time

constraint

If we start at ðr1; r2Þ, then by making a choice of

controls in (4) and letting the dynamical system evolve,

after small time dt we can make a transition to all points
ð~rr1; ~rr2Þ, which are related to ðr1; r2Þ, by
~rr1
~rr2

� �
¼ r1

r2

� �
þ dtpJ

�nu21 �u1u2
u1u2 �nu22

� �
r1
r2

� �
:

From all points ð~rr1; ~rr2Þ that can be reached by appro-

priate choice of ðu1; u2Þ in small time dt, we should
choose to go to that ð~rr1; ~rr2Þ for which V ð~rr1; ~rr2Þ is the
largest. But now note by definition of V that

V ðr1; r2Þ ¼ max~rr1;~rr2 V ð~rr1; ~rr2Þ. This can be re-written as

V ðr1; r2Þ ¼ max
u1;u2

V ðr1 þ dtð�nu21r1 � u1u2r2Þ; r2

þ dtð�nu22r2 þ u1u2r1ÞÞ

for infinitesimal dt. The right-hand side of the above

expression can be expanded (Taylor series expansion) in

powers of dt and retaining only the terms linear in dt (for
dt approaching zero), we get

V ðr1; r2Þ ¼ V ðr1; r2Þ þ dtpJ

 max
u1;u2

oV
or1

oV
or2

� �
�nu21 �u1u2
u1u2 �nu22

� �
r1
r2

� �
:

Let

H ¼ oV
or1

oV
or2

� �
�nu2 �uv
uv �nv2

� �
r1
r2

� �
:

This equation then reduces to

max
u1;u2

Hðu1; u2Þ ¼ 0: ðA:1Þ

The optimal control u1ðr1; r2Þ and u2ðr1; r2Þ maximizes

the above expression and its maximum value is zero. If

we can find a function V ðr1; r2Þ , which satisfies Eq. (A.1)
then finding ðu1; u2Þ which satisfy (A.1) will give us the

optimal control to apply in any given state of the dy-

namical system.

Let Hðu1; u2Þ be as above. Let k1 ¼ ðoV =or1Þ,
k2 ¼ ðoV =or2Þ, a ¼ ðk2=k1Þ, and b ¼ ðr2=r1Þ. Then
H ¼ �k1r1½nabu22 þ ðb� aÞu1u2 þ nu21�:
Observe if ða� bÞ6 0, then the only solution to Eq.

(A.1) is the trivial solution u�1 ¼ u�2 ¼ 0. Therefore

ða� bÞ > 0. Also note, when ða� bÞ2 < 4n2ab, the only
solution to Eq. (A.1) is again the trivial solution.

Therefore the only case for which (A.1) can be satisfied

is if ðb� aÞ2 ¼ 4abn2, implying
ffiffiffiffiffiffiffiffiffiffiffi
ðb=aÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
� n.

In this regime, maximizing H, we get ðu�1=u�2Þ ¼ ða� bÞ=
2n implying ðu�1=u�2Þ ¼ ðb=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
�nÞ. Integrating Eq.

(4), for this choice of optimal control, we get that

starting from the point ðr1; r2Þ, the optimal trajectory

satisfies that r2ðtÞ approaches
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2r21 þ r22

p
for large t.

This is then the desired optimal return function V ðr1; r2Þ.
It can be verified that the optimal return function sat-

isfies Eq. (A.1).
Appendix B. Finite time case

We rescale time to eliminate the factor pJ in Eq. (4).

Rewriting (4) in new time units we get

d

dt
r1ðtÞ
r2ðtÞ

� �
¼ �nu21 �u1u2

u1u2 �nu2

� �
r1ðtÞ
r2ðtÞ

� �
: ðB:1Þ
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In the finite time case, the optimal return function
V ðr1; r2; tÞ has explicit dependence on time and by defi-

nition

V ðr1; r2; tÞ ¼ max
u1;u2

V ðr1 þ dtð�nu21r1 � u1u2r2Þ; r2

þ dtð�nu22r2 þ u1u2r1Þ; t þ dtÞ:

Expanding again in powers of dt , we obtain the well

known Hamilton Jacobi Bellman equation [7]

oV
ot

þmax
u1;u2

oV
or1

oV
or2

� �
�nu21 �u1u2
u1u2 �nu22

� �
r1
r2

� �
¼ 0: ðB:2Þ

As in Appendix A, let H ¼ �k1r1½nu21 � ða� bÞ u1u2 þ
nabu22�. Then Eq. (B.2) can be rewritten as

oV
ot

þmax
u1;u2

Hðu1; u2Þ ¼ 0:

For the finite time problem maxu1;u2 H > 0. This implies

ða� bÞ2 > 4n2ab. We consider three separate cases for

the problem

1. Case I: If ða� bÞ < 2n, then the maximum of H is ob-

tained for u2 ¼ 1 and u1 ¼ ða� bÞ=2n.
2. Case II: If ða� bÞP 2n and ða� bÞ=abP 2n, then the

maximum of H is obtained for u1 ¼ 1 and u2 ¼ 1.

3. Case III: If ða� bÞ=ab < 2n, then the maximum of H

is obtained for u1 ¼ 1 and u2 ¼ ða� bÞ=2nab.
From Eq. (B.2), the adjoint variables ðk1; k2Þ ¼ oV =or1;ð
oV =or2Þ satisfy the equations _kk1 ¼ �ðoH=or1Þ and
_kk2 ¼ �ðoH=or2Þ, i.e.

d

dt
k1
k2

� �
¼ nu21 �u1u2

u1u2 nu22

� �
k1
k2

� �
; ðB:3Þ

where ðk1ðT Þ; k2ðT ÞÞ ¼ ð0; 1Þ. From Eqs. (B.1) and (B.3),

we deduce that V ¼ k1r1 þ k2r2 is a constant for optimal

trajectory and equals the optimal cost r2ðT Þ ¼ k1ð0Þ.
Writing the equation for adjoint variables backward in
time, let r ¼ T � t then

d

dr
k1
k2

� �
¼ �nu21 u1u2

�u1u2 �nu22

� �
k1
k2

� �
;

where ðk1ðrÞ; k2ðrÞÞr¼0 ¼ ð0; 1Þ. Now u1ðrÞ and u2ðrÞ
should be chosen to maximize k1ðrÞjr¼T . Observe this is
exactly the same optimization problem as (B.1), where the

roles of u1 and u2 have been switched. From the symmetry

of these two optimization problems, we then have

u�1ðtÞ ¼ u�2ðT � tÞ;
r1ðtÞ ¼ k2ðT � tÞ; r2ðtÞ ¼ k1ðT � tÞ;

ab
T
2

� �
¼ 1; V ¼ 2r1

T
2

� �
r2

T
2

� �
:

Observe from (B.1) and (B.3), that abðtÞ is monotoni-
cally increasing and since abð0Þ ¼ 0 and abðT =2Þ ¼ 1,

we have abðtÞ < 1 for t < T=2. Therefore u�2ðtÞ ¼ 1 for

t < T =2. Since bð0Þ ¼ 0, depending on að0Þ we have two
cases. Case A: In this case að0Þ=2nP 1. Then we start in
the case II discussed above and verify that in this case

a� b is increasing for ab < 1. Therefore we stay in this

case for all t 2 ½0; T =2� and therefore u�1 ¼ u�2ðtÞ ¼ 1 for

all t. Since bð0Þ ¼ 0, we have bðT =2Þ ¼ tan T . Similarly,

a
T
2

� �
¼

að0Þ þ tan T
2

� �
1� að0Þ tan T

2

� � :
If abðT=2Þ ¼ 1. then above equation implies that

tanðT Þ6 1=2n.
Case B. If að0Þ=2n < 1, then u�1ð0Þ ¼ að0Þ=2n and the

system begins in case I. Let jðtÞ satisfy

dj
dt

¼ j2 � 2j þ 1

2n
� 2nj; jð0Þ ¼ 0:

The solution to this equation is given by

jðtÞ ¼ 1þ 2n2 � 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
cothð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
t þ 2bÞ, where

sinhðbÞ ¼ n. It can be verified that in case I, the optimal

trajectory satisfies ðb=aÞðtÞ ¼ jðtÞ. After time s,
ða� bÞ=2n becomes equal to 1 and the system switches

to case II. Putting ða� bÞ=2n ¼ 1 and ðb=aÞðtÞ ¼ jðtÞ,
we get r2ðsÞ=r1ðsÞ ¼ 2njðsÞ=ð1� jðsÞÞ (denote this ratio
by tan h1, see Fig. 5, Panel b). Then again by symmetry
at time T � s we have 1=2nð1=b� 1=aÞ ¼ 1 and the

system switches from case II to case III. In case III,

verify ðb=aÞðtÞ ¼ jðT � tÞ and the switching to this case

occurs at tan h2 ¼ r2=r1 ¼ ð1� jðsÞÞ=2n. Thus the sys-

tem spends T � 2s in region II. Then we have

T � 2s ¼ tan�1 1� jðsÞ
2n

� tan�1 2njðsÞ
1� jðsÞ :

Thus providing result (10).

We now derive an explicit expression for r2ðT Þ. For
tP T � s,

V ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22ðtÞ þ jðT � tÞr21ðtÞ

q
; ðB:4Þ

is constant along the system trajectories and equals the

optimal return function r2ðT Þ. At t ¼ T � s, we have

r2ðT � sÞ=r1ðT � sÞ ¼ tan h2 ¼ ð1� jðsÞÞ=2n and there-

fore from (B.4), we have

V ðT � sÞ ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h2 þ cos2 h2 � 2n sin h2 cos h2

q
;

ðB:5Þ

where R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21ðtÞ þ r22ðtÞ

p
for t ¼ T � s. Also note

V ðT =2Þ ¼ 2r1ðT=2Þr2ðT =2Þ. At time t ¼ T =2, we then

have r2=r1 ¼ tanððh1 þ h2Þ=2Þ and therefore

V
T
2

� �
¼ R2

2 sinðh1 þ h2Þ; ðB:6Þ

where R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21ðT=2Þ þ r22ðT=2Þ

p
. Note between T=2 and

T � s, the system evolves under u1 ¼ u2 ¼ 1. Therefore

R1 ¼ R2 expð�ððT=2Þ � sÞÞ. Since V is constant, equat-

ing (B.5) and (B.6), we get Eq. (11).
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